How factors secreted from astrocytes impact myelin repair.
نویسندگان
چکیده
Over a century ago, hypertrophy of astrocytes was noted as a pathology of multiple sclerosis (MS) and was hypothesized to play an important role in this disease, yet the contribution of astrocytes has been largely underemphasized in the pathophysiology of CNS demyelination. Astrocytes perform many homeostatic functions within the developing and adult CNS, including enhancing formation and maintenance of the blood-brain barrier, moderating neuronal connections through the tripartite synapse, and perhaps even offering intercellular communication independently of neurons. Although there is a significant body of literature characterizing different types of MS lesions, the inflammatory demyelination in an active MS lesion is accompanied by the presence of macrophages, lymphocytes, and large reactive astrocytes. The astrocyte has long been viewed as a cell that promotes inflammation and demyelination, while also forming the glial scar, thus hindering remyelination and axon growth. Renewed interest in the astrocyte has been brought about by recent studies demonstrating that astrocytes can also function as cellular mediators of CNS myelination by promoting oligodendrocyte progenitor migration, proliferation, and differentiation. Thus, refining our knowledge of astrocytic functions in the regulation of CNS myelination may help us to better understand why remyelination fails in MS.
منابع مشابه
The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases
Oligodendrocyte precursor cells (OPCs) originate in specific areas of the developing central nervous system (CNS). Once generated, they migrate towards their destinations where they differentiate into mature oligodendrocytes. In the adult, 5-8% of all cells in the CNS are OPCs, cells that retain the capacity to proliferate, migrate, and differentiate into oligodendrocytes. Indeed, these endogen...
متن کاملPurification and analysis of in vivo-differentiated oligodendrocytes expressing the green fluorescent protein.
A complete understanding of the molecular mechanisms involved in the formation and repair of the central nervous system myelin sheath requires an unambiguous identification and isolation of in vivo-differentiated myelin-forming cells. In order to develop a novel tool for the analysis of in vivo-differentiated oligodendrocytes, we generated transgenic mice expressing a red-shifted variant of the...
متن کاملMyelin damage and repair in pathologic CNS: challenges and prospects
Injury to the central nervous system (CNS) results in oligodendrocyte cell death and progressive demyelination. Demyelinated axons undergo considerable physiological changes and molecular reorganizations that collectively result in axonal dysfunction, degeneration and loss of sensory and motor functions. Endogenous adult oligodendrocyte precursor cells and neural stem/progenitor cells contribut...
متن کاملAstrocytes in Oligodendrocyte Lineage Development and White Matter Pathology
White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be m...
متن کاملEndogenous Mechanisms of Neuroprotection and Neuroregeneration
481 Fom the point of view of oligodendrocyte and demyelinated axon interaction, glial scars of reactive astrocytes obstruct to myelinating oligodendrocytes the access to naked axons. On the other hand, astrocytes also produce neurotrophic factors that promote remyelination. An alternative strategy that CNS cells have to avoid axonal damage, when remyelination is not efficient, consists in that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neuroscience research
دوره 89 1 شماره
صفحات -
تاریخ انتشار 2011